Intro to Motors and Gears

Tom Rebold

Agenda

- Types of Motors
- Motor Performance Specs
- Torque demystified
- Calculating Mechanical Advantage with Gears/Rollers
- Measuring Efficiency
- Demonstration: Computer Tools to Create Gears

DC "Brushed" Motor Rotation

the permanent magnets are stationary (<u>stator</u>) and the <u>armature</u> rotates, changing field polarity <u>commutator</u> transfers current to armature

http://en.wikipedia.org/wiki/Brushed_DC_Electric_Motor

Brushless DC Motors

- More Powerful and Efficient
- More Costly--Electronics to control current
- the permanent magnets rotate and the armature remains static.
- Computer fan motor \rightarrow
- Floppy Drive motor (above)

AC Motors

- Induction Motors (Tesla)
 - Kicked off 2nd Industrial Revolution, 1888
 - Need 3-Phase AC power
- Squirrel Cage Motors (common)
 - Washing Machines, Fans,
 - Dryers, Record Players

http://en.wikipedia.org/wiki/AC_motor

Our Motor Specs

- Radio Shack <u>Gearless</u> Motor
 - Voltage: 1.5 3 V
 - Current: .98 A at max efficiency
- Speed:
 - 11600 RPM at no load (RPM=Revs Per Minute)
 - 8300 RPM at max efficiency
- Shaft diameter ??
- Output ??
- Torque: ??

Our Motor Specs

- Radio Shack <u>Gear</u> Motor
 - Voltage: 1.5 3 V
 - Current: .18 .25 at no load
 .7 A at max efficiency
- Speed:
 - 8700 RPM at no load
 - 5800 RPM at max efficiency
- Shaft diameter .0787 mm (more like1.5 mm)
- Output .31 W
- Torque: 5.3 g/cm

... is this accurate?

What is Torque?

- Also called Moment
- A rotational force applied to a lever
- Using 3D Vector Notation
 - $au = \mathbf{r} imes \mathbf{F}$
- In 2 Dimensions

 $T = (\text{distance to center}) \cdot \text{force}$

 A force of 3 Newtons applied 2 meters out = force of 6 Newtons applied at 1 meter = <u>6 N-m</u>

http://en.wikipedia.org/wiki/Torque

Angular vs Linear Motion Analogies

- Linear Motion:
 - force, mass, acceleration
- Angular Motion:
 - torque, moment of inertia, angular acceleration

Some Other Units of Torque

- Torque = Force x Distance
- SI Units: Newton-Meters $(1N = 1 \text{ kg-m/s}^2)$
- English Units:
 - Foot-Pounds
 - Oz-Inches (for small motors)
- Q: what is our gearmotor unit?
 - A: 5.3 g/cm ????
 - see: http://www.shinano.com/xampp/skvconv.swf

Converting Units of Torque

 The method of unit analysis:

 5.3 g-cm = 5.3 x <u>1 kg</u> x <u>2.2 lb</u> x <u>16 oz</u> x <u>1 in</u> 1000g 1 kg 1 lb 2.54 cm
 = .06929 oz-in

• What about N-m ? A Newton = $1 \text{ kg} - \text{m/s}^2$

- The force of 1 kg accelerated 1 m/s²
- But on Earth, 1 kg is subject to $g= 9.8 \text{ m/s}^2$

Converting N-m to ft-lbs

• To go from N-m to ft-lbs, first remove the contribution of g, gravitational acceleration:

50	N-m	=	5.098581	kg *	9.80665	m/s2 *	1	m
		=	11.21688	lb *			3.28	ft
		=	36.79136	ft-lb				

- In other words, 50 N-m is like putting a 5.1 kg mass on the end of a 1m wrench and letting gravity (g) pull it down
 - Or a 36 lb weight on a 1 ft wrench
 - Or a 1 lb weight on a 36 ft wrench

Gearing Up Torque

- The Torque of a high speed DC motor is very small...0.069 oz-in ?? That's tiny!
- However we have 6000 RPMs, way too high
- Gears let us cash in RPMs for more torque

How it works

- The force applied at the edge of the small gear $F = T_1/r_1$
- Creates greater torque on the large gear

Effect on RPM (angular velocity)

 The Torque on the large gear has been amplifed $T_2 = T_1 \times r_2$ r₁ The speed on the large gear has been reduced F $W_2 = W_1 \times \underline{r_1}$ \mathbf{r}_2 r_2

The Example of Spindle to CD

- Motor Shaft Diam=1.5mm
- CD Diameter = 120 mm
- Motor Torque= 0.069 oz-in
- CD axle Torque
 - =.069*(120/1.5)
 - =5.5 oz-in
- CD RPM
 - =6000*(1.5/120)
 - =75 RPM

Power Efficiency in Motors and Gears

- These are ideal calculations
 - In reality, there are losses due to friction, slippage
 - Also, the motor itself is not 100% efficient
 - As Engineers, we will be very interested to learn what the efficiency of our machine is
 - And how to optimize it

Efficiency of Motors

- Motors convert Electrical Power into Mechanical Power
- Input Power is the product of Volts x Amps
- What about output power?
 - Power = Energy/Time
 - Energy = Force*Distance (= Torque*Angle)
 - Therefore Power = Force * Distance/Time or F*v

To Measure Motor Output Power

- We can set up a spool to wind a string
 - If we can raise a Mass M (kg) by D (m) in T (sec)
 - We are applying a force M*g over D m/T sec
 - Power = $M^{*}g^{*}D/T$
- Suppose M= 0.5 kg, D=0.5m and T=2 sec
 - Power = .5* 9.8 * .5 / 2 kg-m²/s²

= 1.225 Watts

Π

Efficiency

- Suppose in the previous test we measured the motor drawing .5A of current at 6 V.
 - Pin = .5 * 6 = 3 W
 - Pout = 1.225 W
- Efficiency is just Pout/Pin converted to %
 - Efficiency = 1.225/3 = .408 = 40.8%

What about measuring Torque?

- We can take the data from the last example:
 - -F = Mg = .5*9.8 = 4.9 kg m/s2 = 4.9 N
 - Suppose the Radius of the spool is 2 cm
 - Torque = 4.9 * .02 = .098 N-m

Big Picture

- This is essentially how the whole power grid works. A generator (opposite of motor) creates electricity, wires distribute it, and then it runs our appliances (motors, TVs, etc) with a certain efficiency at each step. If we can improve the efficiency, we can reduce fuel expenses, save \$\$ and resources, etc.
- Engineers are all about improving efficiency (through ingenuity...for example LED lighting)